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Sensors are everywhere

* In many applications, we generate large sequences of
timestamped observations

—— "Sensors” have a broad definition
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Challenges

* These data is:
- High-dimensional
- Unlabeled
- High-velocity
- Changing over time
- Heterogeneous

* So we need a method of uncovering interpretable structure from
the sensors in an unsupervised way,
it must be:
- Scalable (large amounts of raw data over long time series)
- Robust (must apply to lots of different applications)
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How to model

* We can often model these data as a network of interacting entities
in these cases

* We can use these networks to discover how the structure of a
complex system changes over time
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Network encode structure

* These can be modeled as a network of interacting entities, where
each entity is a node associated with a time series of data points

* An edge represents a partial correlation, or a direct effect (holding
all other nodes constant) between two entities

o Markov random fields denote
conditional independencies between
o different entities

MRF properties:
o o » Pairwise Markov property

» Local Markov property
e » Global Markov property

Ref. Wikipedia/Markov random field



https://en.wikipedia.org/wiki/Markov_random_field
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Networks can evolve over time

e These Networks do not remain constant over the course of the
time series!

 Many different types of evolutions:
- Sudden shift of the entire network structure
- A single node rewiring all its edges
- Smoothly varying over time
- One or two edges changing in the whole network

* Therefore, methods must be able to uncover many types
evolutionary patterns
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Time-Varying Graphical Lasso

Q: So TVGL=?

A: A method takes in raw time series data and returns a correlation
network showing how each of the sensors are related to each other
and how these relationships evolve over time

Time-Varying Graphical Lasso

Pow Data —p Time-Varying
Network
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Network inference from time series
data

* Convert a sequence of timestamped sensor observation into a
time-varying network

» Time
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Tool: Inverse Covariance Matrix

* Assume observations x{, X, ..., X,~N(u, X). We are interested in
estimating inverse covariance matrix ® = X! to describe the
Dependency Network

* Also called precision matrix, where ©;; = 0 means that
elements i and j are conditionally independent

* Asparse inverse covariance allows us to encode conditional
independence between different variables
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Inferring Static Networks

[ minimize — 1(0) + A(|0]|yq 1 ]
Assume that z; ~ N (p,B) . i =1,2,3,...,n
L(®) = _1 — exp{—%i(mi —p)'S Nz — p)}
(2m) =[] i=1
InL(©) = —%HDIH(Z?T} —ln|E - = Z — )

Set §= 13" (2 — p)(zi — p)t .
In L(©) = —%nD In(27) + %ln o - %tr(eS}

x C+n(ln|B| —tr(6S))

Because O is positive-definite(S?, , ), B
now our objective is: @rél;n n(Tr(OS) —logdet 0) + All@”ed 1
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Inferring Dynamic Networks - TVG

We solve for®@ = (0,0,, ...,0;):

4 )
T T
mip > —1(0) + 8illogs + B ) ¥(O; = 0;-)
S OES i=1 i=2 )

* Here, ll(Gl) = Tli(lOg det @i — TT(SL'GL')), ,8 >0
 AndyY(0; — O;_,) is a convex penalty function, minimized at 1 (0),

Simultaneously aiming to achieve three goals:
» Matching the empirical data
» Sparsity in the network
- Provides interpretability and prevents overfitting
» Temporal consistency
- We leverage the fact the different snapshots in time are related by
imposing a penalty to limit how the network can change over time
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Evolutionary dynamics

If we have an expectation about how the underlying network
may change over time, we are able to encode it into y:

([X]; refers to the j-th column of a matrix X )

* Afew edges changing at a time: (X) = 2.; ; |X; ]
* Global restructuring: Y (X) = Z]-”[X]j”2

* Smoothly varying over time: Y (X) = }; ; Xl-ZJ-

* Block-wise restructuring: (X) = Zj(miax 1Xi ;1)

* Perturbed node: 1 (X) = V;lei/I%:XZj”[V]jHZ
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How to solve the problem:

* The time-varying graphical lasso often requires
analyzing many sensors over long time periods
— Standard(centralized) solvers cannot scale!

e Split the problem up into a series of subproblems on a

chain graph
— logdet ©; + Tr(5,0,) — logdet ©, + Tr(S,0,) —logdet O7 + Tr(SrO7)
+ )'“61“(3(],1 + }\”8‘2”:):1,] 4 A”eT”ﬂd,l
® . ] L ] — ®
tl 6,{,':-‘(92_ (_)1) tz /ﬁ"@lz‘[f:'];;_@g} ﬁ -u')(e-]n - eT—l) tT
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Alternating Direction method of
multipliers(ADMM)

— logdet ©; + Tr(S510,) — logdet @5 + Tr(S,0) —logdet ©1 + Tr(S7O7)
‘I‘ )\“61“(3(]:1 +}‘||92||“d1] +A||.€'T||Gd=l
® . ® 'R _ ®
t Bu(©:-61) t, B0y BuOr—Or1) t

* ADMM is parallelizable and scalable

* Without any global coordination, this message passing
algorithm quickly converges to the optimal solution

* We can derive close-form solutions for all ADMM
subproblems in TVGL algorithm

© Read the paper if you’re interested in



Network Inference via the TVGL.

Extensions

l SURISHEEINE
\ ’ Data Mining Lab
» Asynchronous Observations:

Where samples are observed at irregularly-spaced intervals(h; = t; — t;_4)

T T
_ 0, -0,
min ) —l(0) + AOilloar + B ) hp(—F——)
Ocs’ & = L
i=1 1=2

» Inferring Intermediate Networks:

We estimate O, at any time s by create a dummy node
connecting to the nearest observations j — 1 and j

Glsrrelislz‘i+ W(s — tj_l)l/)(G)s — (r)j_l) + W(tj — S)l/)(@j —0y)
0, 0, o,
> Streaming Algorithm: . 52 ;
In order to guarantee computing i+ 1% reading comes in
time, we only solve for the m J
most recent nodes. £1 t Tt )

tidm tim+1 ti tiv1

— Solve for these ©’s subject to
9'—m = @'E—'m
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Experiments - Scalability
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» ADMM can solve for millions of variables in just minutes!
- Centralized solvers (CVXOPT,SCS) and naive ADMM

implementation explode computationally
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Experiments — Case study

Intel

» Dataset: Daily stock prices of several large companies in early 2010
- Treat the closing price of each stock as a daily sensor observation
» Network Sparsity shows the relationships between different
companies
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Experiments — Case study

» What insights can we find by looking at how the stock
network evolves?
» Perturbed-node penalty:
- The event that had largest single-node effect on
dynamics of the network

- Perturbed Node Detection for Finance Data 1 2 3 45 6
C Apple: 1
2 ol | Microsoft: 2
3 Amazon: 3
g o Intel: 4
: Boeing: 5
a . Fedl’x: 6

Jan. Feb. Mar.
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What caused this shift?

» |t occurred on the day that Apple announced the original iPad!
iPad (1st generation) ®

From Wikipedia, the free encyclopedia

Not to be confused with iPad Mini (1st generation).

The first-generation iPad (/'aipaed/ £VE-pad) is a tablet computer designed
and marketed by Apple Inc. as the first in the iPad line. The device features
an Apple A4 processor, a 9.77 touchscreen display, and, on certain variants,
the capability of accessing cellular networks. Using the iOS operating
system, the iPad can play music, send and receive email and browse the
web. Other functions, which include the ability to play games and access
references, GPS navigation software and social network services can be
enabled by downloading apps.

The device was announced and unveiled onllanuary 27, 2010}at a media

conference. On April 3, 2010, the Wi-Fi variant of the device was released in
the United States, followed by the release of the Wi-Fi + Cellular variant on
April 30. On May 28, it was released in Australia, Canada, France, Japan,
Italy, Germany, Spain, Switzerland and the United Kingdom.

The device received primarily positive reviews from various technology
blogs and publications. Reviewers praised the device for its wide range of
capabilities and labelled it as a competitor to laptops and netbooks, Some
aspects were criticized, including the closed nature of the operating system
and the lack of support for the Adobe Flash multimedia format. During the
first 80 days, three million iPads were sold. By the launch of the iPad 2,
Apple sold more than 15 million iPads.

On March 2, 2011, Apple announced the iPad 2 and the discontinuation of
production of the original iPad.[5]

Black iPad

Developer Apple Inc,
Contents [hids] Manufacturer Foxconn
Product iPad

-

1 History
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Experiments — Case study

» Dynamic sensor network can be used as a “signature”
- Understand driving styles
- Identify drivers
- Detect when drivers are distracted, drowsy, drunk, etc.

SA = Steering Wheel Angle
SV = Steering Wheel Velocity
V = Velocity

B = Brake Pedal

P = Gas Pedal

X = Forward Acceleration

Y = Lateral Acceleration

R = RPM
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Summary

* The time-varying graphical lasso (TVGL)
* A computationally tractable method of inferring dynamic networks
* Robust and scalable solution based on ADMM

* Different temporal dependencies allow for many types of
structural evolutions over time

* The same setup can be applied on a variety of different
applications
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 Toeplitz Inverse Covariance-Based Clustering of
Multivariate Time Series Data
- David Hallac, Stephen Boyd, Jure Leskovec, etc. KDD’17 J
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Discovering Structure in the Data

* These large amounts time-series data mentioned before can often
be broken down into a sequence of states

* For example raw sensor data from a fitness tracking device can be
interpreted as a temporal sequence of actions showed below

Walking Running Sitting Running

O gyl
st WA
Q. A
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Simultaneously Segmentation and
Clustering

 However in general these states are not predefined and we do not

know what they are or what they refer to
e We need to learn both the states themselves and also how the

time series splits into these states
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What does Clustering do?

e Given: multivariate time series data of length T

* Goal: Assign each point in the time series into one of K different
states for clustering, each defined by a unique “pattern”

 Temporal consistency ( = Do segmentation):
- Adjacent points should be encouraged to belonging to the
same cluster
- This yields segments of time are intervals of time where the
state of the system remains constant
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Recall the Correlation Network
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Definition of a Cluster

* We assign each point to a cluster by analyzing a short time
window ending at the point
- It provides real and more context for the data (e.g. the case of
automobiles)

e Each cluster is then defined by a multilayer correlation network,
or Markov Random Field (MRF), showing the correlation between
different sensors at that point in time and over that window
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Multi-layer Correlation Network

 These networks encode the conditional dependency structural
relationships between the different centers across time.

States: A B C B

Cluster A Cluster B
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An example: Turn and Slow down
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Problem Setup

* Consider a time series of T sequential observations,
I |

X1 X2 X3 XT1,

[ B |
Our goal is to cluster these T observations into K clusters.

Xorig =

* Rather than just look at x;, we instead cluster a short subsequence
of size w < T that ends at ¢, consists of X;_,y11, ..., X¢.

* We refer to these subsequences from X; to X, as X.
Now our goal is to cluster these subsequence X4, ..., Xy, and we
encourage adjacent subsequences to belong the same cluster.
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Toeplitz Inverse Covariance-Based
Clustering(TICC)

* Define each cluster by a Gaussian inverse covariance
©; € R™W*W Our overall optimization problem is:

% sparsity log likelihood  temporal consistency

argmin )" |10 ®lli+ ) [~00(Xr.©0:)+ BLIX1 & P;)
O€7.P j=1 X, €P;

* We solve for these K inverse covariances, ® = {04, ..., O},
and the resulting assignment sets P = {P,, ..., Py} where P; c {1,2, ..., T}.
* T is the set of symmetric block Toeplitz nw * nw matrices
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Block Toeplitz Matrices

e Sparsity in the Toeplitz Matrix defines the MRF edge structure
A0 (AT (4@)TT
O, =140 A(0) (A(l) )T
A(2) A1) A(0)

* Toeplitz constraint enforces time invariance ( Key idea!)
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Expectation Maximization

* TICCis highly con-convex
- But we can use a EM-like approach to solve it

e Alternate between:
- Assigning points to clusters in a temporally consistent way
- Updating the cluster parameters
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Assigning Points to Clusters

» We can solve this with dynamic programming (e.g. Viterbi)
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Updating the Cluster Parameters

* Toeplitz Graphical Lasso:
minimize —log det ®; + tr(5;0;) + ﬁ |40 O],
l
Subject to 0,eT

* We can derive an ADMM solution with closed-form proximal
operators to solve the problem efficiently
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Experiments — Clustering F1 Score

Temporal Sequence

Clustering Method 1,2,1 | 1,2,3,2,1 | 1,2,3,4,1,2,3,4 | 1,2,2,1,3,3,3,1
TICC 0.92 0.90 0.98 0.98
TICC, =0 0.88 0.89 0.86 0.89
Model- GMM 0.68 0.55 0.83 0.62
Based EEV 0.59 0.66 0.37 0.88
DTW, GAK 0.64 0.33 0.26 0.27
Distance- DTW, Euclidean 0.50 0.24 0.17 0.25
Based Neural Gas 0.52 0.35 0.27 0.34
K-means 0.59 0.34 0.24 0.34

» Use synthetic data (with known ground truth)
» At least 41% higher F1 score than every other non-TICC method!
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Experiments — Robustness
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TICC Runtime (Seconds)
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Experiments — Scalability
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Number of Observations

» 10 million observations, each 50-dimensional, in just 20 minutes
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Experiments — Case study

e Automobile sensor data

e 7 sensors every 0.1 seconds (1 hour of 36,000 observations):
- Brake Pedal Position
- Forward (X-) Acceleration
- Lateral (Y-) Acceleration
- Steering Wheel Angle
- Vehicle Velocity
- Engine RPM
- Gas Pedal Position

 Window size of 1 second, and K=5 picked by using BIC
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Experiments — Case study

HIRBRTNE

Data Mining Lab

Interpretation Brake | X-Acc | Y-Acc | SW Angle | Vel | RPM | Gas
#1 | Slowing Down 25.64 0 0 0 27.16 0 0
#2 Turning 0 4.24 66.01 17.56 0 5.13 | 135.1
#3 | Speeding Up 0 0 0 0 1600 | 0 | 450
#4 | Driving Straight || 0 0 0 0 322 | 0 | 268
#5 Curvy Road 4.52 0 4.81 0 0 0 94.8

* Betweenness centrality for each sensor in each of the five clusters,
show how “important” each sensor is, and more specifically how
much it directly affects the other sensor values.
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Experiments — Case study

* Going Straight, Slowing down, Turning, Speeding up
e Based on structure, rather than distance, left turn and right turn
look very similar
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Summary

* Toeplitz Inverse Covariance-Based Clustering (TICC)
- Simultaneously do segmentation and clustering of multivariate
time series data

States: A B C B

Cluster A Cluster B



Thanks

Code all available at TVGL & TICC

Yao Yang

up9288yy@gmail.com



http://snap.stanford.edu/tvgl
http://snap.stanford.edu/ticc

