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Sensors are everywhere

• In many applications, we generate large sequences of 
timestamped observations

—— ”Sensors” have a broad definition
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Challenges

• These data is:
- High-dimensional
- Unlabeled
- High-velocity
- Changing over time
- Heterogeneous

• So we need a method of uncovering interpretable structure from 
the sensors in an unsupervised way,
it must be:

- Scalable (large amounts of raw data over long time series)
- Robust (must apply to lots of different applications)
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How to model

• We can often model these data as a network of interacting entities 
in these cases

• We can use these networks to discover how the structure of a 
complex system changes over time
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• These can be modeled as a network of interacting entities, where 
each entity is a node associated with a time series of data points

• An edge represents a partial correlation, or a direct effect (holding 
all other nodes constant) between two entities

Network encode structure

Markov random fields denote 
conditional independencies between 
different entities
MRF properties:
 Pairwise Markov property
 Local Markov property
 Global Markov property

Ref. Wikipedia/Markov random field

https://en.wikipedia.org/wiki/Markov_random_field
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Networks can evolve over time

• These Networks do not remain constant over the course of the 
time series!

• Many different types of evolutions:
- Sudden shift of the entire network structure
- A single node rewiring all its edges
- Smoothly varying over time
- One or two edges changing in the whole network

• Therefore, methods must be able to uncover many types 
evolutionary patterns



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室Network Inference via the TVGL. 

Time-Varying Graphical Lasso

Q: So TVGL=?

A: A method takes in raw time series data and returns a correlation 
network showing how each of the sensors are related to each other 
and how these relationships evolve over time
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Network inference from time series 
data

• Convert a sequence of timestamped sensor observation into a 
time-varying network
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Tool: Inverse Covariance Matrix

• Assume observations 𝒙1, 𝒙2, … , 𝒙𝑛~𝑁 𝝁, 𝚺 . We are interested in 
estimating inverse covariance matrix 𝚯 = 𝚺−1 to describe the 
Dependency Network

• Also called precision matrix, where Θ𝑖𝑗 = 0 means that

elements 𝑖 and 𝑗 are conditionally independent

• A sparse inverse covariance allows us to encode conditional 
independence between different variables
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Inferring Static Networks

Because 𝚯 is positive-definite(𝑺++
𝑝

),
now our objective is:

min
𝚯∈𝑺++

𝑝
𝑛(𝑇𝑟 𝚯𝑺 − log det𝚯) + 𝜆 𝚯 𝑜𝑑,1

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 − 𝑙 𝚯 + 𝜆 𝚯 od,1
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Inferring Dynamic Networks - TVGL
We solve for 𝚯 = 𝚯1, 𝚯2, … , 𝚯𝑇 :

• Here, 𝑙𝑖 𝚯𝑖 = 𝑛𝑖 log det𝚯𝑖 − 𝑇𝑟 𝑺𝑖𝚯𝑖 , 𝛽 ≥ 0,
• And 𝜓 𝚯𝑖 − 𝚯𝑖−1 is a convex penalty function, minimized at 𝜓 0 ,

min
𝚯∈𝑺++

𝑝
෍

𝑖=1

𝑇

−𝑙𝑖 𝚯𝑖 + 𝜆 𝚯𝑖 𝑜𝑑,1 + 𝛽෍

𝑖=2

𝑇

𝜓(𝚯𝑖 − 𝚯𝑖−1)

Simultaneously aiming to achieve three goals:
 Matching the empirical data
 Sparsity in the network

- Provides interpretability and prevents overfitting
 Temporal consistency

- We leverage the fact the different snapshots in time are related by
imposing a penalty to limit how the network can change over time 
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Evolutionary dynamics

If we have an expectation about how the underlying network
may change over time, we are able to encode it into 𝜓:

( 𝑿 𝑗 refers to the j-th column of a matrix 𝑿 )

• A few edges changing at a time: 𝜓 𝑿 = σ𝑖,𝑗 |𝑋𝑖,𝑗|

• Global restructuring: 𝜓 𝑿 = σ𝑗 𝑿 𝑗 2

• Smoothly varying over time: 𝜓 𝑿 = σ𝑖,𝑗𝑋𝑖,𝑗
2

• Block-wise restructuring: 𝜓 𝑿 = σ𝑗(max𝑖
|𝑋𝑖,𝑗|)

• Perturbed node: 𝜓 𝑿 = min
𝑽:𝑽+𝑽𝑇=𝑿

σ𝑗 𝑽 𝑗 2
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How to solve the problem?

• The time-varying graphical lasso often requires 
analyzing many sensors over long time periods

— Standard(centralized) solvers cannot scale!

• Split the problem up into a series of subproblems on a 
chain graph



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室Network Inference via the TVGL. 

Alternating Direction method of 
multipliers(ADMM)

• ADMM is parallelizable and scalable
• Without any global coordination, this message passing 

algorithm quickly converges to the optimal solution
• We can derive close-form solutions for all ADMM 

subproblems in TVGL algorithm

 Read the paper if you’re interested in
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Extensions
 Asynchronous Observations:

Where samples are observed at irregularly-spaced intervals(ℎ𝑖 = 𝑡𝑖 − 𝑡𝑖−1)

min
𝚯∈𝑺++

𝑝
෍

𝑖=1

𝑇

−𝑙𝑖 𝚯𝑖 + 𝜆 𝚯𝑖 𝑜𝑑,1 + 𝛽෍

𝑖=2

𝑇

ℎ𝑖𝜓(
𝚯𝑖 −𝚯𝑖−1

ℎ𝑖
)

 Inferring Intermediate Networks:
We estimate 𝚯𝑠 at any time s by create a dummy node
connecting to the nearest observations 𝑗 − 1 and 𝑗

min
𝚯𝑠∈𝑺++

𝑝
𝑤 𝑠 − 𝑡𝑗−1 𝜓 𝚯𝑠 − 𝚯𝑗−1 + 𝑤 𝑡𝑗 − 𝑠 𝜓(𝚯𝑗 − 𝚯𝑠)

 Streaming Algorithm:
In order to guarantee computing 
time, we only solve for the m
most recent nodes.
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Experiments - Scalability

ADMM can solve for millions of variables in just minutes!
- Centralized solvers (CVXOPT,SCS) and naïve ADMM 
implementation explode computationally 
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Experiments – Case study

Dataset: Daily stock prices of several large companies in early 2010
- Treat the closing price of each stock as a daily sensor observation

Network Sparsity shows the relationships between different 
companies



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室Network Inference via the TVGL. 

Experiments – Case study
What insights can we find by looking at how the stock 

network evolves?
Perturbed-node penalty:

- The event that had largest single-node effect on
dynamics of the network
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What caused this shift?
 It occurred on the day that Apple announced the original iPad!
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Experiments – Case study
Dynamic sensor network can be used as a “signature”

- Understand driving styles
- Identify drivers
- Detect when drivers are distracted, drowsy, drunk, etc.
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Summary

• The time-varying graphical lasso (TVGL)

• A computationally tractable method of inferring dynamic networks

• Robust and scalable solution based on ADMM

• Different temporal dependencies allow for many types of 
structural evolutions over time

• The same setup can be applied on a variety of different 
applications
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Discovering Structure in the Data
• These large amounts time-series data mentioned before can often 

be broken down into a sequence of states
• For example raw sensor data from a fitness tracking device can be 

interpreted as a temporal sequence of actions showed below
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Simultaneously Segmentation and 
Clustering

• However in general these states are not predefined and we do not 
know what they are or what they refer to

• We need to learn both the states themselves and also how the 
time series splits into these states
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What does Clustering do?

• Given: multivariate time series data of length T

• Goal: Assign each point in the time series into one of K different 
states for clustering, each defined by a unique “pattern”

• Temporal consistency ( = Do segmentation):
- Adjacent points should be encouraged to belonging to the 

same cluster
- This yields segments of time are intervals of time where the 

state of the system remains constant
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Recall the Correlation Network



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室Toeplitz Inverse Covariance-Based Clustering. 

Definition of a Cluster

• We assign each point to a cluster by analyzing a short time 
window ending at the point
- It provides real and more context for the data (e.g. the case of 
automobiles)

• Each cluster is then defined by a multilayer correlation network,
or Markov Random Field (MRF), showing the correlation between
different sensors at that point in time and over that window
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Multi-layer Correlation Network
• These networks encode the conditional dependency structural 

relationships between the different centers across time.
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An example: Turn and Slow down
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Problem Setup

• Consider a time series of T sequential observations,

Our goal is to cluster these T observations into K clusters.

• Rather than just look at 𝒙𝑡, we instead cluster a short subsequence 
of size 𝑤 ≪ 𝑇 that ends at 𝑡, consists of 𝒙𝒕−𝒘+𝟏, … , 𝒙𝒕.

• We refer to these subsequences from 𝑿𝟏 to 𝑿𝐓, as 𝑿.
Now our goal is to cluster these subsequence 𝑿𝟏, … , 𝑿𝑻,  and we
encourage adjacent subsequences to belong the same cluster.
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Toeplitz Inverse Covariance-Based 
Clustering(TICC) 

• Define each cluster by a Gaussian inverse covariance 
Θ𝑖 ∈ 𝑅𝑛𝑤∗𝑛𝑤 , Our overall optimization problem is:

• We solve for these 𝐾 inverse covariances, 𝚯 = 𝜣𝟏, … , 𝜣𝑲 ,
and the resulting assignment sets 𝑃 = {𝑃1, … , 𝑃𝐾} where 𝑃𝑖 ⊂ 1,2, … , 𝑇 .

• 𝒯 is the set of symmetric block Toeplitz 𝑛𝑤 ∗ 𝑛𝑤 matrices



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室Toeplitz Inverse Covariance-Based Clustering. 

Block Toeplitz Matrices
• Sparsity in the Toeplitz Matrix defines the MRF edge structure

• Toeplitz constraint enforces time invariance ( Key idea!)
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Expectation Maximization

• TICC is highly con-convex
- But we can use a EM-like approach to solve it

• Alternate between:
- Assigning points to clusters in a temporally consistent way
- Updating the cluster parameters
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Assigning Points to Clusters
 We can solve this with dynamic programming (e.g. Viterbi)
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Updating the Cluster Parameters

• Toeplitz Graphical Lasso:

minimize − log det𝚯𝐢 + 𝑡𝑟 𝑺𝒊𝚯𝒊 +
1

𝑃𝑖
𝝀 ∘ 𝚯𝒊 1

Subject to 𝚯𝒊 ∈ 𝒯

• We can derive an ADMM solution with closed-form proximal 
operators to solve the problem efficiently
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Experiments – Clustering F1 Score

 Use synthetic data (with known ground truth)
 At least 41% higher F1 score than every other non-TICC method!
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Experiments – Robustness
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Experiments – Scalability

 10 million observations, each 50-dimensional, in just 20 minutes
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Experiments – Case study

• Automobile sensor data

• 7 sensors every 0.1 seconds (1 hour of 36,000 observations):
- Brake Pedal Position
- Forward (X-) Acceleration
- Lateral (Y-) Acceleration
- Steering Wheel Angle
- Vehicle Velocity
- Engine RPM
- Gas Pedal Position

• Window size of 1 second, and K=5 picked by using BIC
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Experiments – Case study

• Betweenness centrality for each sensor in each of the five clusters, 
show how “important” each sensor is, and more specifically how 
much it directly affects the other sensor values. 
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Experiments – Case study

• Going Straight, Slowing down, Turning, Speeding up
• Based on structure, rather than distance, left turn and right turn 

look very similar
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Summary
• Toeplitz Inverse Covariance-Based Clustering (TICC)

- Simultaneously do segmentation and clustering of multivariate
time series data
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Thanks

Code all available at TVGL & TICC
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http://snap.stanford.edu/tvgl
http://snap.stanford.edu/ticc

